home *** CD-ROM | disk | FTP | other *** search
- /* Definitions of target machine for GNU compiler for Intel 80386.
- Copyright (C) 1988 Free Software Foundation, Inc.
-
- This file is part of GNU CC.
-
- GNU CC is free software; you can redistribute it and/or modify
- it under the terms of the GNU General Public License as published by
- the Free Software Foundation; either version 1, or (at your option)
- any later version.
-
- GNU CC is distributed in the hope that it will be useful,
- but WITHOUT ANY WARRANTY; without even the implied warranty of
- MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
- GNU General Public License for more details.
-
- You should have received a copy of the GNU General Public License
- along with GNU CC; see the file COPYING. If not, write to
- the Free Software Foundation, 675 Mass Ave, Cambridge, MA 02139, USA. */
-
-
- /* Note that some other tm- files include this one and then override
- many of the definitions that relate to assembler syntax. */
-
- /* Names to predefine in the preprocessor for this target machine. */
-
- /* the file tm-compaq.h includes this file */
-
-
- #define I386 1
-
- /* Run-time compilation parameters selecting different hardware subsets. */
-
- extern int target_flags;
-
- /* Macros used in the machine description to test the flags. */
-
- /* Compile 80387 insns for floating point (not library calls). */
- #define TARGET_80387 (target_flags & 1)
- /* Compile using ret insn that pops args.
- This will not work unless you use prototypes at least
- for all functions that can take varying numbers of args. */
- #define TARGET_RTD (target_flags & 8)
- /* Compile passing first two args in regs 0 and 1.
- This exists only to test compiler features that will
- be needed for RISC chips. It is not usable
- and is not intended to be usable on this cpu. */
- #define TARGET_REGPARM (target_flags & 020)
-
- /* Macro to define tables used to set the flags.
- This is a list in braces of pairs in braces,
- each pair being { "NAME", VALUE }
- where VALUE is the bits to set or minus the bits to clear.
- An empty string NAME is used to identify the default VALUE. */
-
- #define TARGET_SWITCHES \
- { { "80387", 1}, \
- { "soft-float", -1}, \
- { "rtd", 8}, \
- { "nortd", -8}, \
- { "regparm", 020}, \
- { "noregparm", -020}, \
- { "sym", 0 }, \
- { "symm", 0 }, \
- { "", TARGET_DEFAULT}}
-
- /* TARGET_DEFAULT is defined in tm-compaq.h, etc. */
-
- /* target machine storage layout */
-
- /* Define this if most significant byte of a word is the lowest numbered. */
- /* That is true on the 80386. */
-
- /* #define BITS_BIG_ENDIAN */
-
- /* Define this if most significant byte of a word is the lowest numbered. */
- /* That is not true on the 80386. */
- /* #define BYTES_BIG_ENDIAN */
-
- /* Define this if most significant word of a multiword number is numbered. */
- /* Not true for 80386 */
- /* #define WORDS_BIG_ENDIAN */
-
- /* number of bits in an addressible storage unit */
- #define BITS_PER_UNIT 8
-
- /* Width in bits of a "word", which is the contents of a machine register.
- Note that this is not necessarily the width of data type `int';
- if using 16-bit ints on a 80386, this would still be 32.
- But on a machine with 16-bit registers, this would be 16. */
- #define BITS_PER_WORD 32
-
- /* Width of a word, in units (bytes). */
- #define UNITS_PER_WORD 4
-
- /* Width in bits of a pointer.
- See also the macro `Pmode' defined below. */
- #define POINTER_SIZE 32
-
- /* Allocation boundary (in *bits*) for storing pointers in memory. */
- #define POINTER_BOUNDARY 32
-
- /* Allocation boundary (in *bits*) for storing arguments in argument list. */
- #define PARM_BOUNDARY 32
-
- /* Boundary (in *bits*) on which stack pointer should be aligned. */
- #define STACK_BOUNDARY 32
-
- /* Allocation boundary (in *bits*) for the code of a function. */
- #define FUNCTION_BOUNDARY 32
-
- /* Alignment of field after `int : 0' in a structure. */
-
- #define EMPTY_FIELD_BOUNDARY 32
-
- /* There is no point aligning anything to a rounder boundary than this. */
- /* Some structures in the ATT libraries are assumed to round up from 16 to 18
- bytes, for example the _io_buf */
- #define BIGGEST_ALIGNMENT 32
-
- /* Define this if move instructions will actually fail to work
- when given unaligned data. */
- /* #define STRICT_ALIGNMENT */
-
- /* Standard register usage. */
-
- /* Number of actual hardware registers.
- The hardware registers are assigned numbers for the compiler
- from 0 to just below FIRST_PSEUDO_REGISTER.
- All registers that the compiler knows about must be given numbers,
- even those that are not normally considered general registers.
- In the 80387 we give the 8 general purpose registers the numbers 0-7,
- we assign 6 numbers for floating point registers 8-13,
- Note that registers 0-7 can be accessed as a short or int,
- while only 0-3 may be used with mov byte instructions.
- */
- #define FIRST_PSEUDO_REGISTER 10
-
- /* 1 for registers that have pervasive standard uses
- and are not available for the register allocator.
- On the 80386, only the stack pointer is such. */
- #define FIXED_REGISTERS \
- /*ax,ad,ac,ab,si,di,bp,sp,fval,fp0*/ \
- { 0, 0, 0, 0, 0, 0, 0, 1, 1, 0}
-
- /* ;;change-wfs */
-
- /* 1 for registers not available across function calls.
- These must include the FIXED_REGISTERS and also any
- registers that can be used without being saved.
- The latter must include the registers where values are returned
- and the register where structure-value addresses are passed.
- Aside from that, you can include as many other registers as you like. */
-
- #define CALL_USED_REGISTERS \
- /*ax,ad,ac,ab,si,di,bp,sp,*/ \
- { 1, 1, 1, 0, 0, 0, 0, 1, \
- 1, 1}
-
- /* Return number of consecutive hard regs needed starting at reg REGNO
- to hold something of mode MODE.
- This is ordinarily the length in words of a value of mode MODE
- but can be less for certain modes in special long registers.
-
- Actually there are no two word move instructions for consecutive
- registers. And only registers 0-3 may have mov byte instructions
- applied to them.
- */
-
- #define HARD_REGNO_NREGS(REGNO, MODE) \
- ((REGNO) >= 8 ? 1 \
- : ((GET_MODE_SIZE (MODE) + UNITS_PER_WORD - 1) / UNITS_PER_WORD))
-
- /* Value is 1 if hard register REGNO can hold a value of machine-mode MODE.
- On the 80386, the first 4 cpu registers can hold any mode.
- While the floating point registers may hold SFmode or DFmode only.
- */
-
- #define HARD_REGNO_MODE_OK(REGNO, MODE) \
- hard_regno_mode_ok(REGNO,MODE)
-
- /* Value is 1 if it is a good idea to tie two pseudo registers
- when one has mode MODE1 and one has mode MODE2.
- If HARD_REGNO_MODE_OK could produce different values for MODE1 and MODE2,
- for any hard reg, then this must be 0 for correct output. */
-
- #define MODES_TIEABLE_P(MODE1, MODE2) ((MODE1) == (MODE2))
-
- /* Specify the registers used for certain standard purposes.
- The values of these macros are register numbers. */
-
- /* on the 386 the pc register is %eip, and is not usable as a general
- register. The ordinary mov instructions won't work */
- /* #define PC_REGNUM */
-
- /* Register to use for pushing function arguments. */
- #define STACK_POINTER_REGNUM 7
-
- /* Base register for access to local variables of the function. */
- #define FRAME_POINTER_REGNUM 6
-
- /* First floating point reg */
- #define FIRST_FLOAT_REG 8
- /* Value should be nonzero if functions must have frame pointers.
- Zero means the frame pointer need not be set up (and parms
- may be accessed via the stack pointer) in functions that seem suitable.
- This is computed in `reload', in reload1.c. */
- #define FRAME_POINTER_REQUIRED 0
-
- /* Base register for access to arguments of the function. */
- #define ARG_POINTER_REGNUM 6
-
- /* Register in which static-chain is passed to a function. */
- #define STATIC_CHAIN_REGNUM 2
-
- /* Register in which address to store a structure value
- arrives in the function. On the 386, the prologue
- copies this from the stack to register %eax. */
- #define STRUCT_VALUE_INCOMING \
- gen_rtx (MEM, Pmode, gen_rtx (PLUS, Pmode, frame_pointer_rtx, \
- gen_rtx (CONST_INT, VOIDmode, 8)))
-
- /* Place in which caller passes the structure value address.
- Actually, all that matters about this value is it its rtx_code:
- MEM means push the value on the stack like an argument. */
- #define STRUCT_VALUE \
- gen_rtx (MEM, Pmode, gen_rtx (PRE_DEC, Pmode, stack_pointer_rtx))
-
- /* Define the classes of registers for register constraints in the
- machine description. Also define ranges of constants.
-
- One of the classes must always be named ALL_REGS and include all hard regs.
- If there is more than one class, another class must be named NO_REGS
- and contain no registers.
-
- The name GENERAL_REGS must be the name of a class (or an alias for
- another name such as ALL_REGS). This is the class of registers
- that is allowed by "g" or "r" in a register constraint.
- Also, registers outside this class are allocated only when
- instructions express preferences for them.
-
- The classes must be numbered in nondecreasing order; that is,
- a larger-numbered class must never be contained completely
- in a smaller-numbered class.
-
- For any two classes, it is very desirable that there be another
- class that represents their union. */
-
-
- enum reg_class {
- NO_REGS, AREG, DREG, ADREG, CREG, BREG, Q_REGS, SIREG, DIREG,
- INDEX_REGS, GENERAL_REGS, FLOAT_REGS, ALL_REGS, LIM_REG_CLASSES };
-
- #define N_REG_CLASSES (int) LIM_REG_CLASSES
-
- /* Give names of register classes as strings for dump file. */
-
- #define REG_CLASS_NAMES \
- { "NO_REGS", "AREG", "DREG", "ADREG", "CREG", "BREG","Q_REGS", \
- "SIREG", "DIREG", \
- "INDEX_REGS", "GENERAL_REGS", "FLOAT_REGS", "ALL_REGS"}
- /* Define which registers fit in which classes.
- This is an initializer for a vector of HARD_REG_SET
- of length N_REG_CLASSES. */
-
-
-
- #define REG_CLASS_CONTENTS {0, 0x1, 0x2, 0x3, 0x4, 0x8, 0xf,\
- 0x10, 0x20, 0x7f, 0xff, 0x300, 0x3ff}
-
- /* The same information, inverted:
- Return the class number of the smallest class containing
- reg number REGNO. This could be a conditional expression
- or could index an array. */
-
- #define REGNO_REG_CLASS(REGNO) \
- ((REGNO) == 0 ? AREG : \
- (REGNO) == 1 ? DREG : \
- (REGNO) == 2 ? CREG : \
- (REGNO) == 3 ? BREG : \
- (REGNO) == 4 ? SIREG : \
- (REGNO) == 5 ? DIREG : \
- (REGNO) == 7 ? GENERAL_REGS : \
- (REGNO) < 8 ? INDEX_REGS : \
- FLOAT_REGS)
-
- #define NON_QI_REG_P(X) \
- (REG_P (X) && REGNO (X) >= 4 && REGNO (X) < FIRST_PSEUDO_REGISTER)
-
- #define FP_REG_P(X) (REG_P (X) && FP_REGNO_P (REGNO (X)))
- #define FP_REGNO_P(n) ((n) >= FIRST_FLOAT_REG && (n) < FIRST_PSEUDO_REGISTER)
-
- /* Try to maintain the accuracy of the death notes for regs satisfying the
- following. Important for stack like regs, to know when to pop. */
-
- #define PRESERVE_DEATH_INFO_REGNO_P(x) FP_REGNO_P(x)
-
- /* 1 if register REGNO can magically overlap other regs.
- Note that nonzero values work only in very special circumstances.
- We return 1 for an FP reg because "both" our FP regs
- are really the same reg. */
-
- #define OVERLAPPING_REGNO_P(REGNO) FP_REGNO_P (REGNO)
-
- /* The class value for index registers, and the one for base regs. */
-
- #define INDEX_REG_CLASS INDEX_REGS
- #define BASE_REG_CLASS GENERAL_REGS
-
- /* Get reg_class from a letter such as appears in the machine description. */
-
- #define REG_CLASS_FROM_LETTER(C) \
- ((C) == 'r' ? GENERAL_REGS : \
- (C) == 'q' ? Q_REGS : \
- (C) == 'f' ? FLOAT_REGS : \
- (C) == 'a' ? AREG : (C) == 'b' ? BREG : \
- (C) == 'c' ? CREG : (C) == 'd' ? DREG : \
- (C) == 'A' ? ADREG : \
- (C) == 'S' ? SIREG : \
- (C) == 'D' ? DIREG : NO_REGS)
-
- /* The letters I, J, K, L and M in a register constraint string
- can be used to stand for particular ranges of immediate operands.
- This macro defines what the ranges are.
- C is the letter, and VALUE is a constant value.
- Return 1 if VALUE is in the range specified by C.
-
- I is for the maximum shifts.
- */
-
- #define CONST_OK_FOR_LETTER_P(VALUE, C) \
- ((C) == 'I' ? (VALUE) >= 0 && (VALUE) <= 31 :0)
-
- /* Similar, but for floating constants, and defining letters G and H.
- Here VALUE is the CONST_DOUBLE rtx itself. */
-
- #define CONST_DOUBLE_OK_FOR_LETTER_P(VALUE, C) \
- ((C) == 'G' ? ! (TARGET_80387 && standard_80387_constant_p (VALUE)) : 1)
-
- /* Given an rtx X being reloaded into a reg required to be
- in class CLASS, return the class of reg to actually use.
- In general this is just CLASS; but on some machines
- in some cases it is preferable to use a more restrictive class.
- On the 80386 series, we prevent floating constants from being
- reloaded into floating registers (since no move-insn can do that)
- and we ensure that QImodes aren't reloaded into the esi or edi reg. */
-
- #define PREFERRED_RELOAD_CLASS(X,CLASS) \
- (GET_CODE (X) == CONST_DOUBLE \
- ? ((CLASS) == GENERAL_REGS || (CLASS) == ALL_REGS \
- ? GENERAL_REGS : NO_REGS) \
- : GET_MODE (X) == QImode \
- ? ((CLASS) == GENERAL_REGS || (CLASS) == ALL_REGS \
- ? Q_REGS \
- : (CLASS) == INDEX_REGS ? (abort (), INDEX_REGS) \
- : (CLASS)) \
- : (CLASS))
-
- /* Return the maximum number of consecutive registers
- needed to represent mode MODE in a register of class CLASS. */
- /* On the 80386, this is the size of MODE in words,
- except in the FP regs, where a single reg is always enough. */
- #define CLASS_MAX_NREGS(CLASS, MODE) \
- ((CLASS) == FLOAT_REGS ? 1 : \
- ((GET_MODE_SIZE (MODE) + UNITS_PER_WORD - 1) / UNITS_PER_WORD))
-
- /* Stack layout; function entry, exit and calling. */
-
- /* Define this if pushing a word on the stack
- makes the stack pointer a smaller address. */
- #define STACK_GROWS_DOWNWARD
-
- /* Define this if the nominal address of the stack frame
- is at the high-address end of the local variables;
- that is, each additional local variable allocated
- goes at a more negative offset in the frame. */
- #define FRAME_GROWS_DOWNWARD
-
- /* Offset within stack frame to start allocating local variables at.
- If FRAME_GROWS_DOWNWARD, this is the offset to the END of the
- first local allocated. Otherwise, it is the offset to the BEGINNING
- of the first local allocated. */
- #define STARTING_FRAME_OFFSET 0
-
- /* If we generate an insn to push BYTES bytes,
- this says how many the stack pointer really advances by.
- On 386 pushw decrements by exactly 2 no matter what the position was.
- On the 386 there is no pushb; we use pushw instead, and this
- has the effect of rounding up to 2. */
-
- #define PUSH_ROUNDING(BYTES) (((BYTES) + 1) & (-2))
-
- /* Offset of first parameter from the argument pointer register value. */
- #define FIRST_PARM_OFFSET(FNDECL) 8
-
- /* Value is 1 if returning from a function call automatically
- pops the arguments described by the number-of-args field in the call.
- FUNTYPE is the data type of the function (as a tree),
- or for a library call it is an identifier node for the subroutine name.
-
- On the 80386, the RTD insn may be used to pop them if the number
- of args is fixed, but if the number is variable then the caller
- must pop them all. RTD can't be used for library calls now
- because the library is compiled with the Unix compiler.
- Use of RTD is a selectable option, since it is incompatible with
- standard Unix calling sequences. If the option is not selected,
- the caller must always pop the args. */
-
- #define RETURN_POPS_ARGS(FUNTYPE) \
- (TARGET_RTD && TREE_CODE (FUNTYPE) != IDENTIFIER_NODE \
- && (TYPE_ARG_TYPES (FUNTYPE) == 0 \
- || TREE_VALUE (tree_last (TYPE_ARG_TYPES (FUNTYPE))) == void_type_node))
-
- #define FUNCTION_VALUE(VALTYPE, FUNC) \
- gen_rtx (REG, TYPE_MODE (VALTYPE), \
- VALUE_REGNO(TYPE_MODE(VALTYPE)))
-
- /* Define how to find the value returned by a library function
- assuming the value has mode MODE. */
-
- #define LIBCALL_VALUE(MODE) \
- gen_rtx (REG, MODE, VALUE_REGNO(MODE))
-
- /* 1 if N is a possible register number for function argument passing.
- On the 80386, no registers are used in this way.
- *NOTE* -mregparm does not work.
- It exists only to test register calling conventions. */
-
- #define FUNCTION_ARG_REGNO_P(N) 0
- /* Define a data type for recording info about an argument list
- during the scan of that argument list. This data type should
- hold all necessary information about the function itself
- and about the args processed so far, enough to enable macros
- such as FUNCTION_ARG to determine where the next arg should go.
-
- On the 80386, this is a single integer, which is a number of bytes
- of arguments scanned so far. */
-
- #define CUMULATIVE_ARGS int
-
- /* Initialize a variable CUM of type CUMULATIVE_ARGS
- for a call to a function whose data type is FNTYPE.
- For a library call, FNTYPE is 0.
-
- On the 80386, the offset starts at 0. */
-
- #define INIT_CUMULATIVE_ARGS(CUM,FNTYPE) \
- ((CUM) = 0)
-
- /* Update the data in CUM to advance over an argument
- of mode MODE and data type TYPE.
- (TYPE is null for libcalls where that information may not be available.) */
-
- #define FUNCTION_ARG_ADVANCE(CUM, MODE, TYPE, NAMED) \
- ((CUM) += ((MODE) != BLKmode \
- ? (GET_MODE_SIZE (MODE) + 3) & ~3 \
- : (int_size_in_bytes (TYPE) + 3) & ~3))
-
- /* Define where to put the arguments to a function.
- Value is zero to push the argument on the stack,
- or a hard register in which to store the argument.
-
- MODE is the argument's machine mode.
- TYPE is the data type of the argument (as a tree).
- This is null for libcalls where that information may
- not be available.
- CUM is a variable of type CUMULATIVE_ARGS which gives info about
- the preceding args and about the function being called.
- NAMED is nonzero if this argument is a named parameter
- (otherwise it is an extra parameter matching an ellipsis). */
-
-
- /* On the 80386 all args are pushed, except if -mregparm is specified
- then the first two words of arguments are passed in EAX, EDX.
- *NOTE* -mregparm does not work.
- It exists only to test register calling conventions. */
-
- #define FUNCTION_ARG(CUM, MODE, TYPE, NAMED) \
- ((TARGET_REGPARM && (CUM) < 8) ? gen_rtx (REG, (MODE), (CUM) / 4) : 0)
-
- /* For an arg passed partly in registers and partly in memory,
- this is the number of registers used.
- For args passed entirely in registers or entirely in memory, zero. */
-
-
- #define FUNCTION_ARG_PARTIAL_NREGS(CUM, MODE, TYPE, NAMED) \
- ((TARGET_REGPARM && (CUM) < 8 \
- && 8 < ((CUM) + ((MODE) == BLKmode \
- ? int_size_in_bytes (TYPE) \
- : GET_MODE_SIZE (MODE)))) \
- ? 2 - (CUM) / 4 : 0)
-
- /* This macro generates the assembly code for function entry.
- FILE is a stdio stream to output the code to.
- SIZE is an int: how many units of temporary storage to allocate.
- Refer to the array `regs_ever_live' to determine which registers
- to save; `regs_ever_live[I]' is nonzero if register number I
- is ever used in the function. This macro is responsible for
- knowing which registers should not be saved even if used. */
-
- #define FUNCTION_PROLOGUE(FILE, SIZE) \
- function_prologue (FILE, SIZE)
-
- /* Output assembler code to FILE to increment profiler label # LABELNO
- for profiling a function entry. */
-
- #define FUNCTION_PROFILER(FILE, LABELNO) \
- fprintf (FILE, "\tmovl $%sP%d,%%edx\n\tcall _mcount\n", LPREFIX, (LABELNO));
-
- /* EXIT_IGNORE_STACK should be nonzero if, when returning from a function,
- the stack pointer does not matter. The value is tested only in
- functions that have frame pointers.
- No definition is equivalent to always zero. */
- /* Note on the 386 it might be more efficient not to define this since
- we have to restore it ourselves from the frame pointer, in order to
- use pop */
-
- #define EXIT_IGNORE_STACK 1
-
- /* This macro generates the assembly code for function exit,
- on machines that need it. If FUNCTION_EPILOGUE is not defined
- then individual return instructions are generated for each
- return statement. Args are same as for FUNCTION_PROLOGUE.
-
- The function epilogue should not depend on the current stack pointer!
- It should use the frame pointer only. This is mandatory because
- of alloca; we also take advantage of it to omit stack adjustments
- before returning. */
-
- #define FUNCTION_EPILOGUE(FILE, SIZE) \
- function_epilogue (FILE, SIZE)
-
- /* If the memory address ADDR is relative to the frame pointer,
- correct it to be relative to the stack pointer instead.
- This is for when we don't use a frame pointer.
- ADDR should be a variable name. */
-
-
- #define FIX_FRAME_POINTER_ADDRESS(ADDR,DEPTH) \
- { int offset = -1; \
- rtx regs = stack_pointer_rtx; \
- if (ADDR == frame_pointer_rtx) \
- offset = 0; \
- else if (GET_CODE (ADDR) == PLUS && XEXP (ADDR, 0) == frame_pointer_rtx \
- && GET_CODE (XEXP (ADDR, 1)) == CONST_INT) \
- offset = INTVAL (XEXP (ADDR, 1)); \
- else if (GET_CODE (ADDR) == PLUS && XEXP (ADDR, 0) == frame_pointer_rtx) \
- { rtx other_reg = XEXP (ADDR, 1); \
- offset = 0; \
- regs = gen_rtx (PLUS, Pmode, stack_pointer_rtx, other_reg); } \
- else if (GET_CODE (ADDR) == PLUS && XEXP (ADDR, 1) == frame_pointer_rtx) \
- { rtx other_reg = XEXP (ADDR, 0); \
- offset = 0; \
- regs = gen_rtx (PLUS, Pmode, stack_pointer_rtx, other_reg); } \
- else if (GET_CODE (ADDR) == PLUS \
- && GET_CODE (XEXP (ADDR, 0)) == PLUS \
- && XEXP (XEXP (ADDR, 0), 0) == frame_pointer_rtx \
- && GET_CODE (XEXP (ADDR, 1)) == CONST_INT) \
- { rtx other_reg = XEXP (XEXP (ADDR, 0), 1); \
- offset = INTVAL (XEXP (ADDR, 1)); \
- regs = gen_rtx (PLUS, Pmode, stack_pointer_rtx, other_reg); } \
- else if (GET_CODE (ADDR) == PLUS \
- && GET_CODE (XEXP (ADDR, 0)) == PLUS \
- && XEXP (XEXP (ADDR, 0), 1) == frame_pointer_rtx \
- && GET_CODE (XEXP (ADDR, 1)) == CONST_INT) \
- { rtx other_reg = XEXP (XEXP (ADDR, 0), 0); \
- offset = INTVAL (XEXP (ADDR, 1)); \
- regs = gen_rtx (PLUS, Pmode, stack_pointer_rtx, other_reg); } \
- if (offset >= 0) \
- { int regno; \
- extern char call_used_regs[]; \
- for (regno = FIRST_FLOAT_REG; regno < FIRST_PSEUDO_REGISTER; regno++)\
- if (regs_ever_live[regno] && ! call_used_regs[regno]) \
- offset += 8; \
- for (regno=0 ; regno <FIRST_FLOAT_REG ; regno++) \
- if (regs_ever_live[regno] && ! call_used_regs[regno]) \
- offset += 4; \
- offset -= 4; \
- ADDR = plus_constant (regs, offset + (DEPTH)); } } \
-
- /* Addressing modes, and classification of registers for them. */
-
- /* #define HAVE_POST_INCREMENT */
- /* #define HAVE_POST_DECREMENT */
-
- /* #define HAVE_PRE_DECREMENT */
- /* #define HAVE_PRE_INCREMENT */
-
- /* Macros to check register numbers against specific register classes. */
-
- /* These assume that REGNO is a hard or pseudo reg number.
- They give nonzero only if REGNO is a hard reg of the suitable class
- or a pseudo reg currently allocated to a suitable hard reg.
- Since they use reg_renumber, they are safe only once reg_renumber
- has been allocated, which happens in local-alloc.c. */
-
- #define REGNO_OK_FOR_INDEX_P(REGNO) \
- ((REGNO) < STACK_POINTER_REGNUM || (unsigned) reg_renumber[REGNO] < STACK_POINTER_REGNUM)
- #define REGNO_OK_FOR_BASE_P(REGNO) \
- ((REGNO) <= STACK_POINTER_REGNUM || (unsigned) reg_renumber[REGNO] <= STACK_POINTER_REGNUM)
-
- #define REGNO_OK_FOR_SIREG_P(REGNO) ((REGNO) == 4 || reg_renumber[REGNO] == 4)
- #define REGNO_OK_FOR_DIREG_P(REGNO) ((REGNO) == 5 || reg_renumber[REGNO] == 5)
-
- /* The macros REG_OK_FOR..._P assume that the arg is a REG rtx
- and check its validity for a certain class.
- We have two alternate definitions for each of them.
- The usual definition accepts all pseudo regs; the other rejects
- them unless they have been allocated suitable hard regs.
- The symbol REG_OK_STRICT causes the latter definition to be used.
-
- Most source files want to accept pseudo regs in the hope that
- they will get allocated to the class that the insn wants them to be in.
- Source files for reload pass need to be strict.
- After reload, it makes no difference, since pseudo regs have
- been eliminated by then. */
-
- #ifndef REG_OK_STRICT
-
- /* Nonzero if X is a hard reg that can be used as an index or if
- it is a pseudo reg. */
- #define REG_OK_FOR_INDEX_P(X) (REGNO (X) < STACK_POINTER_REGNUM || REGNO (X) >= FIRST_PSEUDO_REGISTER)
- /* Nonzero if X is a hard reg that can be used as a base reg
- of if it is a pseudo reg. */
- /* ?wfs */
- #define REG_OK_FOR_BASE_P(X) (REGNO (X) <= STACK_POINTER_REGNUM || REGNO(X) >= FIRST_PSEUDO_REGISTER)
- #define REG_OK_FOR_STRREG_P(X) \
- (REGNO (X) == 4 || REGNO (X) == 5 || REGNO (X) >= FIRST_PSEUDO_REGISTER)
-
- #else
-
- /* Nonzero if X is a hard reg that can be used as an index. */
- #define REG_OK_FOR_INDEX_P(X) REGNO_OK_FOR_INDEX_P (REGNO (X))
- /* Nonzero if X is a hard reg that can be used as a base reg. */
- #define REG_OK_FOR_BASE_P(X) REGNO_OK_FOR_BASE_P (REGNO (X))
- #define REG_OK_FOR_STRREG_P(X) \
- (REGNO_OK_FOR_DIREG_P (REGNO (X)) || REGNO_OK_FOR_SIREG_P (REGNO (X)))
-
- #endif
-
- /* GO_IF_LEGITIMATE_ADDRESS recognizes an RTL expression
- that is a valid memory address for an instruction.
- The MODE argument is the machine mode for the MEM expression
- that wants to use this address.
-
- The other macros defined here are used only in GO_IF_LEGITIMATE_ADDRESS,
- except for CONSTANT_ADDRESS_P which is usually machine-independent. */
-
- #define MAX_REGS_PER_ADDRESS 2
-
- #define CONSTANT_ADDRESS_P(X) CONSTANT_P (X)
-
- /* Nonzero if the constant value X is a legitimate general operand.
- It is given that X satisfies CONSTANT_P or is a CONST_DOUBLE. */
-
- #define LEGITIMATE_CONSTANT_P(X) 1
-
- #define GO_IF_INDEXABLE_BASE(X, ADDR) \
- if (GET_CODE (X) == REG && REG_OK_FOR_BASE_P (X)) goto ADDR
-
- #define LEGITIMATE_INDEX_REG_P(X) \
- (GET_CODE (X) == REG && REG_OK_FOR_INDEX_P (X))
-
- /* Return 1 if X is an index or an index times a scale. */
-
- #define LEGITIMATE_INDEX_P(X) \
- (LEGITIMATE_INDEX_REG_P (X) \
- || (GET_CODE (X) == MULT \
- && LEGITIMATE_INDEX_REG_P (XEXP (X, 0)) \
- && GET_CODE (XEXP (X, 1)) == CONST_INT \
- && (INTVAL (XEXP (X, 1)) == 2 \
- || INTVAL (XEXP (X, 1)) == 4 \
- || INTVAL (XEXP (X, 1)) == 8)))
-
- /* Go to ADDR if X is an index term, a base reg, or a sum of those. */
-
- #define GO_IF_INDEXING(X, ADDR) \
- { if (LEGITIMATE_INDEX_P (X)) goto ADDR; \
- GO_IF_INDEXABLE_BASE (X, ADDR); \
- if (GET_CODE (X) == PLUS && LEGITIMATE_INDEX_P (XEXP (X, 0))) \
- { GO_IF_INDEXABLE_BASE (XEXP (X, 1), ADDR); } \
- if (GET_CODE (X) == PLUS && LEGITIMATE_INDEX_P (XEXP (X, 1))) \
- { GO_IF_INDEXABLE_BASE (XEXP (X, 0), ADDR); } }
-
- /* We used to allow this, but it isn't ever used.
- || ((GET_CODE (X) == POST_DEC || GET_CODE (X) == POST_INC) \
- && REG_P (XEXP (X, 0)) \
- && REG_OK_FOR_STRREG_P (XEXP (X, 0))) \
- */
-
- #define GO_IF_LEGITIMATE_ADDRESS(MODE, X, ADDR) \
- { if (CONSTANT_ADDRESS_P (X)) goto ADDR; \
- GO_IF_INDEXING (X, ADDR); \
- if (GET_CODE (X) == PLUS) \
- { if (CONSTANT_ADDRESS_P (XEXP (X, 1))) \
- GO_IF_INDEXING (XEXP (X, 0), ADDR); \
- if (CONSTANT_ADDRESS_P (XEXP (X, 0))) \
- GO_IF_INDEXING (XEXP (X, 1), ADDR); } }
-
- /* Try machine-dependent ways of modifying an illegitimate address
- to be legitimate. If we find one, return the new, valid address.
- This macro is used in only one place: `memory_address' in explow.c.
-
- OLDX is the address as it was before break_out_memory_refs was called.
- In some cases it is useful to look at this to decide what needs to be done.
-
- MODE and WIN are passed so that this macro can use
- GO_IF_LEGITIMATE_ADDRESS.
-
- It is always safe for this macro to do nothing. It exists to recognize
- opportunities to optimize the output.
-
- For the 80386, we handle X+REG by loading X into a register R and
- using R+REG. R will go in a general reg and indexing will be used.
- However, if REG is a broken-out memory address or multiplication,
- nothing needs to be done because REG can certainly go in a general reg. */
-
- #define LEGITIMIZE_ADDRESS(X,OLDX,MODE,WIN) \
- { register int ch = (X) != (OLDX); \
- if (GET_CODE (X) == PLUS) \
- { if (GET_CODE (XEXP (X, 0)) == MULT) \
- ch = 1, XEXP (X, 0) = force_operand (XEXP (X, 0), 0); \
- if (GET_CODE (XEXP (X, 1)) == MULT) \
- ch = 1, XEXP (X, 1) = force_operand (XEXP (X, 1), 0); \
- if (ch && GET_CODE (XEXP (X, 1)) == REG \
- && GET_CODE (XEXP (X, 0)) == REG) \
- return X; \
- if (ch) { GO_IF_LEGITIMATE_ADDRESS (MODE, X, WIN); } \
- if (GET_CODE (XEXP (X, 0)) == REG \
- || (GET_CODE (XEXP (X, 0)) == SIGN_EXTEND \
- && GET_CODE (XEXP (XEXP (X, 0), 0)) == REG \
- && GET_MODE (XEXP (XEXP (X, 0), 0)) == HImode)) \
- { register rtx temp = gen_reg_rtx (Pmode); \
- register rtx val = force_operand (XEXP (X, 1), temp); \
- if (val != temp) emit_move_insn (temp, val, 0); \
- XEXP (X, 1) = temp; \
- return X; } \
- else if (GET_CODE (XEXP (X, 1)) == REG \
- || (GET_CODE (XEXP (X, 1)) == SIGN_EXTEND \
- && GET_CODE (XEXP (XEXP (X, 1), 0)) == REG \
- && GET_MODE (XEXP (XEXP (X, 1), 0)) == HImode)) \
- { register rtx temp = gen_reg_rtx (Pmode); \
- register rtx val = force_operand (XEXP (X, 0), temp); \
- if (val != temp) emit_move_insn (temp, val, 0); \
- XEXP (X, 0) = temp; \
- return X; }}}
-
- /* Go to LABEL if ADDR (a legitimate address expression)
- has an effect that depends on the machine mode it is used for.
- On the 80386, only postdecrement and postincrement address depend thus
- (the amount of decrement or increment being the length of the operand). */
- #define GO_IF_MODE_DEPENDENT_ADDRESS(ADDR,LABEL) \
- if (GET_CODE (ADDR) == POST_INC || GET_CODE (ADDR) == POST_DEC) goto LABEL
-
- /* Specify the machine mode that this machine uses
- for the index in the tablejump instruction. */
- #define CASE_VECTOR_MODE Pmode
-
- /* Define this if the tablejump instruction expects the table
- to contain offsets from the address of the table.
- Do not define this if the table should contain absolute addresses. */
- /* #define CASE_VECTOR_PC_RELATIVE */
-
- /* Specify the tree operation to be used to convert reals to integers.
- This should be changed to take advantage of fist --wfs ??
- */
- #define IMPLICIT_FIX_EXPR FIX_ROUND_EXPR
-
- /* This is the kind of divide that is easiest to do in the general case. */
- #define EASY_DIV_EXPR TRUNC_DIV_EXPR
-
- /* Define this as 1 if `char' should by default be signed; else as 0. */
- #define DEFAULT_SIGNED_CHAR 1
-
- /* Max number of bytes we can move from memory to memory
- in one reasonably fast instruction. */
- #define MOVE_MAX 4
-
- /* Define this if zero-extension is slow (more than one real instruction). */
- /* #define SLOW_ZERO_EXTEND */
-
- /* Nonzero if access to memory by bytes is slow and undesirable. */
- #define SLOW_BYTE_ACCESS 0
-
- /* Define if shifts truncate the shift count
- which implies one can omit a sign-extension or zero-extension
- of a shift count. */
- #define SHIFT_COUNT_TRUNCATED
-
- /* Value is 1 if truncating an integer of INPREC bits to OUTPREC bits
- is done just by pretending it is already truncated. */
- #define TRULY_NOOP_TRUNCATION(OUTPREC, INPREC) 1
-
- /* We assume that the store-condition-codes instructions store 0 for false
- and some other value for true. This is the value stored for true. */
-
- #define STORE_FLAG_VALUE 1
-
- /* When a prototype says `char' or `short', really pass an `int'.
- (The 386 can't easily push less than an int.) */
-
- #define PROMOTE_PROTOTYPES
-
- /* Specify the machine mode that pointers have.
- After generation of rtl, the compiler makes no further distinction
- between pointers and any other objects of this machine mode. */
- #define Pmode SImode
-
- /* A function address in a call instruction
- is a byte address (for indexing purposes)
- so give the MEM rtx a byte's mode. */
- #define FUNCTION_MODE QImode
-
- /* Define this if addresses of constant functions
- shouldn't be put through pseudo regs where they can be cse'd.
- Desirable on the 386 because a CALL with a constant address is
- not much slower than one with a register address. */
- #define NO_FUNCTION_CSE
-
- /* Compute the cost of computing a constant rtl expression RTX
- whose rtx-code is CODE. The body of this macro is a portion
- of a switch statement. If the code is computed here,
- return it with a return statement. Otherwise, break from the switch. */
-
- #define CONST_COSTS(RTX,CODE) \
- case CONST_INT: \
- if (RTX == const0_rtx) return 0; \
- if ((unsigned) INTVAL (RTX) < 077) return 1; \
- case CONST: \
- case LABEL_REF: \
- case SYMBOL_REF: \
- return 3; \
- case CONST_DOUBLE: \
- return 5; \
- case PLUS: \
- if (GET_CODE (XEXP (RTX, 0)) == REG \
- && GET_CODE (XEXP (RTX, 1)) == CONST_INT) \
- return 2;
-
- /* Tell final.c how to eliminate redundant test instructions. */
-
- /* ??? Find a better place to put this. */
- #if 0
- #define FINAL_PRESCAN_INSN(INSN, OPERANDS, NOPERANDS) \
- fp_hook (INSN, OPERANDS, NOPERANDS)
- #endif
-
- /* Here we define machine-dependent flags and fields in cc_status
- (see `conditions.h'). */
-
- /* Set if the cc value is actually in the 80387, so a floating point
- conditional branch must be output. */
- #define CC_IN_80387 04000
-
- /* Store in cc_status the expressions
- that the condition codes will describe
- after execution of an instruction whose pattern is EXP.
- Do not alter them if the instruction would not alter the cc's. */
-
- #define NOTICE_UPDATE_CC(EXP, INSN) \
- notice_update_cc((EXP))
-
- /* Output a signed jump insn. Use template NORMAL ordinarily, or
- FLOAT following a floating point comparison.
- Use NO_OV following an arithmetic insn that set the cc's
- before a test insn that was deleted.
- NO_OV may be zero, meaning final should reinsert the test insn
- because the jump cannot be handled properly without it. */
-
- #define OUTPUT_JUMP(NORMAL, FLOAT, NO_OV) \
- { \
- if (cc_status.flags & CC_IN_80387) \
- return FLOAT; \
- if (cc_status.flags & CC_NO_OVERFLOW) \
- return NO_OV; \
- return NORMAL; \
- }
-
- /* Control the assembler format that we output. */
-
- #ifdef ATT
- #include <syms.h>
- #else
- #define FILNMLEN 14
- #endif
-
- /* How to refer to registers in assembler output.
- This sequence is indexed by compiler's hard-register-number (see above). */
-
- /* In order to refer to the first 8 regs as 32 bit regs prefix an "e"
- For non floating point regs, the following are the HImode names.
- */
-
-
- #define HI_REGISTER_NAMES \
- {"ax","dx","cx","bx","si","di","bp","sp", \
- "st","st(1)"}
- /* ,"st(2)","st(3)","st(4)","st(5)" } */
- #define REGISTER_NAMES HI_REGISTER_NAMES
-
- /* Note we are omitting these since currently I don't know how
- to get gcc to use these, since they want the same but different
- number as al, and ax.
- */
-
- /* note the last four are not really qi_registsers, but
- the md will have to never output movb into one of them
- only a movw . There is no movb into the hardware reg
- esi that I can find */
-
- #define QI_REGISTER_NAMES \
- {"al", "dl", "cl", "bl", "si", "di", "bp", "sp",}
-
- /*
- Don't know how to use these, yet. They overlap with ax,dx,cx,bx
- and so would clobber al,dl,cl,bl
- #define QI_REGISTER_NAMES_TOP \
- {"ah", \
- "dh", \
- "ch", \
- "bh", }
- */
-
- /* How to renumber registers for dbxand gdb. */
-
- /* {0,2,1,3,6,7,4,5,12,13,14,15,16,17} */
- #define DBX_REGISTER_NUMBER(n) \
- ((n)==0?0 :(n)==1?2 :(n)==2?1 :(n)==3?3 :(n)==4?6 :(n)==5?7 :(n)==6?4 :(n)==7?5 :(n)==8?12 :(n)==9?12 :(n))
-
- /* This is how to output the definition of a user-level label named NAME,
- such as the label on a static function or variable NAME. */
-
- #define ASM_OUTPUT_LABEL(FILE,NAME) \
- (assemble_name (FILE, NAME), fputs (":\n", FILE))
-
- /* This is how to output an assembler line defining a `double' constant. */
-
- #define ASM_OUTPUT_DOUBLE(FILE,VALUE) \
- fprintf (FILE, "%s%.22e\n",ASM_DOUBLE, (VALUE))
-
-
- /* This is how to output an assembler line defining a `float' constant. */
-
- #define ASM_OUTPUT_FLOAT(FILE,VALUE) \
- do { union { float f; long l;} tem; \
- tem.f = (VALUE); \
- fputs(ASM_LONG,FILE); \
- fprintf((FILE), "0x%x\n", tem.l); \
- } while (0)
-
-
- /* Store in OUTPUT a string (made with alloca) containing
- an assembler-name for a local static variable named NAME.
- LABELNO is an integer which is different for each call. */
-
- #define ASM_FORMAT_PRIVATE_NAME(OUTPUT, NAME, LABELNO) \
- ( (OUTPUT) = (char *) alloca (strlen ((NAME)) + 10), \
- sprintf ((OUTPUT), "%s.%d", (NAME), (LABELNO)))
-
-
-
- /* This is how to output an assembler line defining an `int' constant. */
-
- #define ASM_OUTPUT_INT(FILE,VALUE) \
- ( fprintf (FILE,ASM_LONG), \
- output_addr_const (FILE,(VALUE)), \
- putc('\n',FILE))
-
- /* Likewise for `char' and `short' constants. */
- /* is this supposed to do align too?? */
-
- #define ASM_OUTPUT_SHORT(FILE,VALUE) \
- ( fprintf (FILE,ASM_SHORT), \
- output_addr_const (FILE,(VALUE)), \
- putc('\n',FILE))
-
- /*
- #define ASM_OUTPUT_SHORT(FILE,VALUE) \
- ( fputs (ASM_BYTE,FILE), \
- output_addr_const (FILE,(VALUE)), \
- fputs ( ",",FILE), \
- output_addr_const (FILE,(VALUE)), \
- fputs (" >> 8\n",FILE))
- */
-
-
- #define ASM_OUTPUT_CHAR(FILE,VALUE) \
- ( fprintf (FILE, ASM_BYTE), \
- output_addr_const (FILE,(VALUE)), \
- putc('\n',FILE))
-
- /* This is how to output an assembler line for a numeric constant byte. */
-
- #define ASM_OUTPUT_BYTE(FILE,VALUE) \
- fprintf ((FILE), "%s0x%x\n", ASM_BYTE, (VALUE))
-
- /* This is how to output an insn to push a register on the stack.
- It need not be very fast code. */
-
- #define ASM_OUTPUT_REG_PUSH(FILE,REGNO) \
- fprintf (FILE, "\tpushl e%s\n", reg_names[REGNO])
-
- /* This is how to output an insn to pop a register from the stack.
- It need not be very fast code. */
-
- #define ASM_OUTPUT_REG_POP(FILE,REGNO) \
- fprintf (FILE, "\tpopl e%s\n", reg_names[REGNO])
-
- /* This is how to output an element of a case-vector that is absolute.
- */
-
- #define ASM_OUTPUT_ADDR_VEC_ELT(FILE, VALUE) \
- fprintf (FILE, "%s%s%d\n",ASM_LONG,LPREFIX, VALUE)
-
- /* This is how to output an element of a case-vector that is relative.
- We don't use these on the 386 yet, because the ATT assembler can't do
- forward reference the differences.
- */
-
- #define ASM_OUTPUT_ADDR_DIFF_ELT(FILE, VALUE, REL) abort(); \
- fprintf (FILE, "\t.word %s%d-%s%d\n",LPREFIX, VALUE,LPREFIX, REL)
-
- /* Define the parentheses used to group arithmetic operations
- in assembler code. */
-
- #define ASM_OPEN_PAREN ""
- #define ASM_CLOSE_PAREN ""
-
- /* Define results of standard character escape sequences. */
- #define TARGET_BELL 007
- #define TARGET_BS 010
- #define TARGET_TAB 011
- #define TARGET_NEWLINE 012
- #define TARGET_VT 013
- #define TARGET_FF 014
- #define TARGET_CR 015
-
- /* Print operand X (an rtx) in assembler syntax to file FILE.
- CODE is a letter or dot (`z' in `%z0') or 0 if no letter was specified.
- The CODE z takes the size of operand from the following digit, and
- outputs b,w,or l respectively.
-
- On the 80386, we use several such letters:
- f -- float insn (print a CONST_DOUBLE as a float rather than in hex).
- L,W,B,Q,S -- print the opcode suffix for specified size of operand.
- R -- print the prefix for register names.
- z -- print the opcode suffix for the size of the current operand.
- * -- print a star (in certain assembler syntax)
- w -- print the operand as if it's a "word" (HImode) even if it isn't.
- w -- print the operand as if it's a byte (QImode) even if it isn't.
- c -- don't print special prefixes before constant operands. */
-
- #define PRINT_OPERAND_PUNCT_VALID_P(CODE) \
- ((CODE) == '*')
-
- #define PRINT_OPERAND(FILE, X, CODE) \
- print_operand (FILE, X, CODE)
-
-
- #define PRINT_OPERAND_ADDRESS(FILE, ADDR) \
- print_operand_address (FILE, ADDR)
-
- /* Routines in gnulib that return floats must return them in an fp reg,
- just as other functions do which return such values.
- These macros make that happen. */
-
- #define SFVALUE float
- #define INTIFY(FLOATVAL) FLOATVAL
-
- /* Nonzero if INSN magically clobbers register REGNO. */
-
- #define INSN_CLOBBERS_REGNO_P(INSN, REGNO) \
- (FP_REGNO_P (REGNO) \
- && (GET_CODE (INSN) == JUMP_INSN || GET_CODE (INSN) == BARRIER))
-
- /* a letter which is not needed by the normal asm syntax, which
- we can use for operand syntax in the extended asm */
-
- #define ASM_OPERAND_LETTER '#'
-
-
- /*
- Local variables:
- version-control: t
- End:
- */
-